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This article presents a modified output-prediction procedure and a new controller

design based on tile predictive control law. Also, a new predictive estimator is

developed to complement the controller and to enhance system performance. The

predictive controller is designed and applied to the tracking control of the Deep

Space Network 70-m antennas. Simulation results show significant improvement in

tracking performance over the linear-q)mdratic controller and estimator presently

ill use,

I. Introduction

The recent pointing requirements for tile X-band

(8.,1 Gllz) frequency, 70-m aperture antenna (further de-

noted as the DSS 14 antenna) and the expectation offllture

K-band (32 GIIz) capability dictate a need for high-

performance controllers for the azimuth and elevation

drives. This article presents a new design procedure for

a tracking controller that significantly improves antenna

tracking performance. It considers on-axis (or servo)

tracking. In this case, the output is taken on the encoder

(or tachometer) rather than tim radio frequency (rf) point-

ing position. The predictive controller uses filture values

of the stored input command to generate the control sig-

nal. For this reason, the predictive control principle is

considered useful ill design of the Deep Space Network

(DSN) antennas' tracking controllers, since the antenna

future tracking command is known when following stars

or spacecraft.

The tracking-control problem is a nontrivial exten-

sion of the regulator problem, widely investigated in the

control literature. Several approaches to the solution of

the tracking probleln have been presented in [1 11]. Pre-

dictive controllers are described and analyzed in many pa-

pers, among them [1,,1,5,6,7,9,10,11]. In most of them,

controlled auto-regressive and integrated moviug-average

(CAItlMA) models are developed and extensively used for

output prediction and predictive control of liuear systems

[t,4,5,6,7,9,10]. State-space description serves as a stan-

(lard tool for system analysis and design. Besides tool stan-

dardization, the state-space representation of a prediclive

control system provides a unique insight into system prop-

erties, improves system design, and simplifies analysis. In-

terpretations of CARIMA modeling in the state space are

provided by [1,4,11].

This article presents a state-space description of the

output-prediction procedure and a new controller design

based on tile predictive control law. A new input-reference

scheme that uses the input-reference horizon is introduced.

Thus, the increment of the control signal is det.ermined

with respect t.o the input horizon rather than to the last
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value of the input. Also, tile introduced weighting matrix

includes a forgetting factor. Both features significantly

improve system performance.

The usefulness of the predictive control law depends on

the availability of the plant-state variables for measure-

ment. Typically, not all state variables can be measured,

although for an observable system they can be estimated.

In this article, a predictive estimator is developed as a
cotnplement to the predictive controller to speed tile esti-

mation process and enhance system performance.

Using tile introduced predictive control and estimation

laws, the state-space predictive controller is designed and

applied to the tracking control of the DSN 70-m antennas.

Simulation results show significant improvement in track-

ing performance over the linear-quadratic (LQ) controller

and estimator presently in use. The robustness to param-
eter variation and the disturbance-suppression properties

are found to be fairly good for the considered predictive

control system.

II. Output Prediction for a Linear System

A plant with nu inputs and ny outputs is considered.
Its linear state-space model consists of n states

x(i+ 1) = Ax(i) + Bu(i), y(i) = Cx(i) + Du(i) (1)

where x E R '_, u E R n_, and y E R "u. The task is to pre-

dict output y for NY steps ahead, given projected input

u for NU steps ahead. The integer NY is the length of

the output horizon, while NU is the length of the input

horizon. For casual systems, the length of the input hori-
zon does not exceed the length of the output horizon, i.e.,
NU < NY.

Before determining the predicted output, the input and

output sequences (or horizons) are introduced. Three
types of input sequences are defined. First is the input

horizon U(i), consisting of the input from an instant i up

to NU - 1 steps ahead

u"(i) = .... ,u '(NU - 1)] (2)

where ui(k) is the predicted input at instant i with k steps
ahead. The input horizon U(i - 1) is a horizon predicted

at the previous time instant. Note that it is not a delayed

prediction at instant i, i.e., Ui_l(k) ¢ u_(k - 1).

Tile second sequence, reference-input horizon U,.(i), is

identical to the previous input horizon U(i- 1) for the

first NR time instants and is constant for the remaining
NU - N R instants

u,(k) =
[ ui- 1(N R)

for k= 1,...,NR

for k=NR+ 1..... NU

(3)

where the integer NR <_ NU is tile length of the reference
horizon. Thus,

U_(i) = EU(i- 1) (4)

where

E

NR times

E2 = lnu NR times

(¸,5)

and I,u is the identity matrix of dimension nu.

The last input sequence, input-increment horizon

AU(i), is defined with respect to reference horizon U,.(i)
as follows:

AU(i) = U(i) - Ur(i) = U(i) - EU(i- 1) (6)

Sequences U(i), U(i- 1), U,.(i), and AU(i) are shown in
Fig. 1.

Two output sequences are introduced: output horizon
Y

Y(i) r = [yT(1),yT(2) ..... yT(Ny)] (7)

R

and predicted-output horizon Y

7Y(i) = [_T(1), _/T(2) .... ,_T(NY)] (8)

The latter is an output of tile system with reference hori-

zon Ur as an input. Components yi(k) and _i(k) are the
output and predicted output, respectively, at instant i with

k steps ahead. Note that although the system output at in-

stant i with k steps ahead is equal to tile output at, instant
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i+ l with k-l steps ahead, yi(k) = yi+l(k - l) = y(i + /),
l < k, the same is not true for the predicted output. The

prediction at instant i with k steps ahead is not tile same

as tile prediction at instant i + l with k - l steps ahead.

The output horizon is obtained from tile plant modcl,

Eq. (1), for k = 1 .... , NY:

y(i + k) = CAkx(i) + CAk-lBu(i) + ...

+ CBu(i + k - 1) (9)

Predicted output _i(k) is defined as a system response

to the reference-horizon input U_(i). Thus, for k =

1,...,NY

_i(k) = CAkx(i)+CAk-lBur(1)+ ...+CBu_(k) (10)

and Eq. (9) is now

y(i + k) = _(k) + CAk-' BAui(O) +...

+ (CAk-NR-1B + .. + CB)Aui(NR- 1)

(11)

Denoting the Markovian matrix

gx 0 ... 0

g2 gl ... 0

G ................................ (12)

gNU gNU-1 ... gl

gNY ffNY-1 • • • gNY-NU+I

where gi = CAi-IB is the /th Markov parameter, one

obtains the output horizon from Eq. (11):

Y(i) = _(i) + GAU(i) (13)

Predicted-output horizon Y, necessary to determine Y in

Eq. (13), is determined from Eq. (10):

7(0 = Hx(i) + GUt(i) = Hx(i) + GEU(i- 1)

= gx(i) + ru(i - 1) (14)

where

F = GE, ff = O:vy-1A (15)

E is as given by Eq. (5), and

ONy-1 = [cT(CA) z. ..(CAArY-1)T] T (16)

The input-increment horizon depends on the length of
the reference horizon. In particular, for NR = 1, one

obtains Aui(k) = ui(k) - ul - 1(1), k = 1 .... ,NU. This

is tile case of the generalized predictive control of [5], where
the control increments are defined with respect to the last

input command. For NR = NU, one obtains E = I

and AU(i) = U(i) - U(i- 1). In this case, the control
increment is defined with respect to the previous control

over the whole length of the input horizon. If the input
increment is determined with respect to the zero-reference

input, the input-increment horizon is equal to the input

horizon, AU(i) = U(i), and for this case, NR = 0. Signal

sequences U(i), U(i- 1), Ur(i), and AU(i) are shown in

Fig. 1 for NR = 0, 1, and NU and for a generic NR. Note
also that for NR = NU one obtains F = G, for NR = 1

one obtains F T = [gT, gT +gT1, .. . ,gT +. ..+gTY], and for

NR = 0 one obtains F = 0. In the latter case, the output

is predicted from the system state only, while otherwise it

is predicted from the state and the system input as well.

I!1. Predictive Control

The basic task for a predictive controller is to assure
that for the bounded input the future output Y will closely

follow the input colranand Yo within the output horizon
NY:

yon(i) r r= [yoi(1), yoi(2) .... ,yT(Ny)] (17)

where Yoi(k) is the command signal at instant i with k

steps ahead. Thus, the task is to minimize the plant track-

ing error while the input remains bounded:

¢(i) = Yo(i) -- Y(i) (18)

cT(i) = [¢T(1),cT(2),... ,¢T(Ny)] (19)

where Ci(k) is the error at instant i with k steps ahead.

The tracking error within the output horizon, as well as
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the restrictions on the input within the input horizon, are

included in performance index J

J = tr (eT(i)Qe(i) + AuT(i)RAU(i)) (20)

where tr(.) denotes the trace of a square matrix; Q and
R are symmetric, positive, definite matrices; Q is the

tracking-error weighting matrix; and R is the control-effort

weighting matrix.

The necessary condition for the optimum, OJ/OAU =

0, applied to Eq. (20) and using Eq. (13), yields

AU(i) = K(Yo(i) - V(i)) = Kg(i) (21)

where

K = (GTQG + R)-IGTQ (22)

and g(i) = Yo(i) - Y(i) is the predicted output error. The

resulting control increment AU(i) covers the whole input-

horizon NU; for control purposes, however, only the first

component (the current control increment) is used. Let k
denote the first nu rows of K:

k = eK, e = [I,_ 0 0...0]

Then the control increment at instant i is

(23)

Au(i) = k(Yo(i) - "_(i)) = kg(i) (24)

and the control input is obtained from Eq. (6)

u(i) = u(i - 1) + Au(i) (25)

Combining Eqs. (24), (25), (14), (15), and (16), one ob-
tains the control command at moment i:

u(i) = u(i - 1) + k (Yo(i) - 7(i))

Thus, the command u(i) depends on the previous input

horizon U(i- 1), on the actual state z(i), and on the
control command Yo(i) up to NY steps ahead.

The closed-loop system equations are obtained by com-

bining the plant equation, Eq. (1), with the controller

equation, Eq. (26), and by introducing the new state vari-

able Uo(i) such that

Uo(i + 1)= U(i) (27)

In this way, one obtains

x(i + 1) = (A- BkH)x(i) + B(e- kF)Uo(i) + BkYo(i)

Uo(i + 1) = -KHx(i) + (IN -- KF)Uo(i) + IiYo(i)

y(i) = cx(i) (28)

and N = NU x nu. With the new state variable zT =

[xT, uT], the closed-loop equations are

z(i + 1) = Acz(i) + BcYo(i), y(i) = Ccz(i) (29)

where

AC _-"
A - BkH B(e - kF) l

-KH IN -- KFFJ

= [(In-BKONy-I)A_KH B(e-kF)]IN_I(F (30)

B T =[BkK] T, Ce=[C O] (31)

One can see that control command u(i) is now

u(i) = kYo(i) + [-kH e - kF]z(i) (32)

= u(i- 1) + kYo(i)- kHx(i) - kFU(i- 1)

and with u(i - 1) = eU(i - 1), the above equation yields

u(i) = kYo(i) - kHx(i) + (e - kF)U(i- 1) (26)

fully recovered from the current state of the system and

from the input command.

The block diagram for the closed-loop system,

Eqs. (29)-(31), is presented in Fig. 2. The system consists

of the plant, the predictor (PRD), the controller (CO),
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andthecommandhorizongenerator(CHG).Thepredic-
torstructureisshownin Fig.3(a)andtile commandhori-
zongeneratorin Fig.3(b).Thestate-spacerepresentation
of thecommandhorizongeneratoris

o / o ... o1
0 0 I ... O|

Arh = ................ I ' Brh -_

/o o o :22)/
LO 0 0 ... OJ

i 0 . 0]
0 I ... 0|

Crh : ............ I ' Drh =

/o-o.i.t/
LO 0 ... 03

(33)

where I is an identity matrix of order ny, and Arh and Brh
have NY - 1 rows, while Crh and Drh have NY columns.

The weighting matrices R and Q are the tuning param-
eters of the optimal design (for example, see [2,12]). That

means they are to be adjusted until satisfactory results

are obtained. Although they are not "active" in the op-

timal design solution, their choice significantly influences

the performance and stability of the system. A general
procedure for a reasonable choice of the weighting matri-

ces is not yet known. In this article, a simplified procedure

is developed. The weighting matrices obtained from this

procedure significantly improve system performance, i.e.,
tracking error.

A diagonal matrix R = pI has been chosen as a control

weighting matrix, where p > 0 is a scalar, and tracking-

error weighting matrix Q has the following structure:

Q = diag(q,_q,ct_q,... ,_NY-lq) (34)

The diagonal component qo_k-lq is tile weight of the error

ofsi(k), tile kth component of_(i). The last weight is time
dependent; the weight of the output error at the (i + k)th
time instant is _k-1. The scalar o_ is called a forgetting

factor. The most recent output is given a unit weight, and

the future output penalized (in fact, awarded, as will be

shown later) exponentially. With this arrangement, the

choice of R and Q reduces to the choice of parameters p,

c_, and q, as is illustrated in Section V.B.

There are two sources of system disturbances: mea-

surement noise vu(i ) (or v_(i) when mea,suring all state

variables) and input disturbances v_,(i) (Fig. 2). The dis-
turbances are included in the closed-loop system model,

with the triple (A¢, Bu, C¢) for the output noise and the

triple (A¢, B_, C¢) for the input disturbances, where

= -EH '

'

Their impact on system performance is studied in Sec-
tion V.D. For high-frequency disturbances, the distur-

bance-rejection properties of the system significantly im-

prove when the lowpass filter (LPF) is applied as in

Fig. 4(a). The plant states related to the command sig-
nal are obtained from the plant model (PM), and they are
extracted from the measured states. The resulting signal

passes through a lowpass filter and is added to the states

previously extracted. The filter is shown in Fig. 4(b).

IV. Predictive Estimation

Implementation of the predictive controller depends on

the availability of the plant states for measurenaent. Often,

these parameters are not available. An LQ estimator (for

example, see [2,13]) that estimates plant state from its

output can be considered as a solution to the problem.
Its action, however, is too slow for the predictive control

system, and the predictive scheme is included in tile design
of the estimator. Thus, a new estimator with dynamic

characteristics comparable to the predictive controller is

developed.

The estimate _(i) of the plant state x(i) is determined

from the input and output horizons as follows. From

Eq. (1), one obtains

k

CAkx(i) = y(i + k) - E CAJ-I Bu(i + k- j),
j----1

or

k=O, 1,2,...,NY

ONyX(i) = Ye(i) - aeu(i) (35)

w]lere
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ce[o],36,
and H, G, and Y are given in Eqs. (15), (12), and (7),

respectively. Variable Ye is an augmented output hori-

zon composed of the current output y(i) and the output
horizon Y(i). From Eq. (35), the estimate k(i) of x(i) is
determined such that for a symmetric, positive, weighting

matrix Qe the estimation index

Je = liH, z(i) - He_(i)ll_, (37)

is minimal, obtaining

._(i) = O+g(Ye(i) - G,U(i)) (38)

where O+y = (OTyQ_ ONY)-IO_cyQe . Note that the
state estimate is determined from input and output hori-

zons, while input and output signals, rather than horizons,
are available for estimation. The input horizon is available,

however, right after the controller output (Fig. 2). Output

horizon Y(i) is not available directly; nevertheless, it can
be obtained from the plant model as follows:

X(i+ 1) = AX(i) + BU(i), Y(i) = CX(i) + DU(i)

(39)

The estimator is shown in Fig. 5(a). Thus, the plant
state is estimated from its output and the input horizon.

This scheme is similar to the LQ estimation scheme, since

it uses the available input and output signals and the plant

model to generate the estimate. The block diagram of

the predictive control system with the predictive estimator

(EST) is shown in Fig. 6.

Unlike the LQ estimator, the predictive estimator does

not have filtering properties, since its output _(i) is pro-

portional to a noisy signal y(i). This drawback can be
removed as follows. Given the plant model output y,_(i)

the output error ¢v(i) = y(i) - y,_(i) is filtered by a proper

filter, obtaining the filtered error ¢vl (i). In most cases, the

output error is a high-frequency noise; hence, a lowpass fil-
ter is applied. The filtered output is obtained by adding a

filtered error to the nominal output yl(i) = yn(i)+err(i).

In this way, most of the noise power is removed from the

output signal, while the basic properties of the signal re-
main untouched. The estimator with a filter is shown in

Fig. 5(b). The filter action will be illustrated in the next
section.

V. Predictive Control and Estimation for the

DSS 14 Antenna

Performances of the predictive controller and estimator

are checked through tracking simulations of ttle DSS 14
National Aeronautics and Space Administration (NASA)/

Jet Propulsion Laboratory (JPL) 70-meter DSN antennas.
The existing control scheme for the DSN 70-m antennas

[14] is based on an LQ regulator design with the integral
action as presented in [15-20]. The LQ control system is

shown in Fig. 7, in which the plant output is augmented

by the addition of the output integrals in order to ensure
the zero mean value of the constant-rate tracking error.

The LQ controller is designed for this augmented plant

with a constant tracking command. This assumption can

be a significant source of tracking error. A controller de-

signed for the constant tracking command can result in
insufficient antenna performance, especially for relatively

fast commands or varying rate commands. In this section,

the performance of the predictive controller is compared
with that of the LQ controller in the tracking environment.

A. Plant Model

The state-space model of the DSS 14 antenna [14] is a

four-state model with position rate u as an input and po-

sition rate y as an output. Its discrete-time representation

(Ad, Be,Cd), with the sampling period At = 0.05 see, is
obtained from the continuous-time representation in [2]:

Ad = [0! 80 00.5443 0.3474

-0.3474 0.5443

0 0 0.8872

/['0"01131
| 0.0025

Bd = 10.0399 ' Ca =

L0.0538

[0.7239 9.2260 0 1.1421]

The system (Ad, Bd, Cd) is augmented. As a result, its

output consists of the position rate, the angular position,
and the integral of the position. The augmented system

is shown in Fig. 8. Denoting Xd the state of the system

(Ad, B_, Cd), and Xpo and Xipo the position and the integral
of the position, respectively, one obtains from Fig. 8

Xipo(i + 1) = Xipo(i) + Atxpo(i)

Xpo(i + 1) = Xpo(i) + AtCdxa(i)

xd(i + 1) = A,txd(i) + BdU(i)
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With the plant-state variable X T : [Xipo,Xpo, xT], the

triple (A, B, C) is the resulting plant-state space repre-
sentation

0] [00][i001A= 0 1 AtCd , B= , C: 1 0

0 0 Ad Bd 0 Cd

used in simulations presented below.

B. Weighting Matrices and Input and Output Horizons

For simulation purposes, a piecewise-linear profile of the

position command is chosen, with linear increase followed

by linear decrease and the final constant value (Fig. 9).
The command rate is 4 mdeg/sec, which is a typical si-

dereal tracking rate. The shape of the command is more

dramatic than the real tracking command, but it has been

chosen to emphasize the tracking possibilities of the pre-

dictive controller. A more realistic tracking command will
be used later in this article.

In order to perform a series of simulations, weighting
matrices R and Q are chosen such that the output er-
ror is small while the control effort is maintained within

reasonable limits. For diagonal-control weighting matrix

R = pI, parameter p = 0.01 is chosen. Tracking-error
weighting matrix Q is as in Eq. (34). Component q is in

the form q = diag(qi,qp,q_). It represents the weight of
the integral, position, and rate components of the output.

The following choices of weight are recommended from a

series of simulations tracking the command as in Fig. 9: for
the integral-of-the-position signal, qi = 10; for the position

signal, qp = 1; and for the rate signal, qr = 0.1. Coeffi-
cient c_k-1 in the weighting matrix is the weight of the

kth error component in the output horizon. Simulations
have been performed in order to determine the value of

parameter c_. The plot of the Euclidean norm of tracking
error IlY- Yoll_ versus _ is shown in Fig. 10 both for differ-

ent lengths of output horizon and for lengths of input and

reference horizon equal to lengths of output horizon. The

plot shows the minimal tracking error obtained for c_ = 6.2

and NY = NU = NR = 6. For NR = NU = NY, Fig. 11
plots the values of _ for which the tracking error is min-

imal. The figure shows that, for horizons that are long
enough, the forgetting factor is close to 1. Thus, in this

case, the time weighting does not significantly improve the

tracking error. However, for short horizons, the proper

choice of forgetting factor is a critical factor that mini-

mizes the error dramatically. In prediction, the forgetting

factor is greater than one (thus, "reminding factor" could

be an adequate name for it). This is in contrast to the

forgetting factor value in estimation procedures such as in

[12], where the factor is smaller than one. This difference
occurs due to opposite time directions; in estimation, the

past values of signal are weighted, while in prediction the

future values of signal are processed.

From simulations, the impact of the length of input-

reference horizon NR and output horizon NY on the

tracking error is determined. The results are plotted in

Fig. 12. One can see that for NR > n/2 and NY > 2n

(where n = 6 is the number of plant-state variables), the
performance error is close to the minimal one.

C. Antenna Performance

The performance of the DSS 14 antenna with the track-

ing command as shown in Fig. 9 has been evaluated for

the parameters recommended above. The following pa-

rameters for the predictive controller were chosen: NR =

NU = NY = n = 6 and weighting matrices with p = 0.01,

q = diag(10, 1,0.1), and a = 6.2. The reference signal
and the position of the antenna with the predictive con-

troller for a = 6.2, for a = 1, and for the antenna with

the LQ controller are shown in Fig. 9. The prediction er-

rors and control input for the above three cases (a = 6.2,

a = 1, and LQ controller) are shown in Figs. 13 and 14.
The figures show better performance by the predictive con-

trollers than by the proposed LQ controller with compara-

ble control effort. Also, predictive-controller performance

with time-weighted output error (a > 1) is better than

predictive-controller performance without time weighting

(a = 1).

The minimum of tracking error for output horizon

NY = 4 is obtained for c_ = 6.4. These two parameters are

used in further simulations, since it is reasonable to have

the length of the output horizon as small as possible; the

dimension of the controller as well as the complexity of the

system depend on NY. The step-response and frequency-
response plots of the closed-loop system with a predictive

controller and an LQ controller are compared in Figs. 15
and 16. Figure 15 shows that the settling time and over-

shoot for the system with the predictive controller, with

NY = NU = NR = 4 and o_ = 6.4, are significantly re-

duced from the system with the LQ controller. Similarly,
from Fig. 16, one can see the tracking performance is im-

proved; the magnitude of the closed-loop transfer function
is equal to 1 over a wider bandwidth. Also, roll-off rate is

improved for the system with a predictive controller (with
NY = NU = NR = 4 and c_ = 6.4, as well as with

NY = NU = NR = 6 and a = 5) when compared to the
system with an LQ controller.

The piecewise constant-rate command, as well as the

unit step command, are dramatic scenarios for the DSS 14
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antenna and have been introduced in order to present dy-

namic possibilities of the predictive control. In order to

meet the typical working requirements for the antenna,
the raised-cosine command is introduced, as in Fig. 17

(solid line). This kind of command is close to the real ele-
vation or azimuth trajectory of the antenna (conscan-like

tracking). The plot of the output of the predictive con-

trol system overlaps the plot of the command, while the
output of the LQ control system is plotted by a dashed

line (Fig. 17). The tracking error, the difference between
the output and the command, is plotted in Fig. 18(a) for

the LQ control system and in Fig. 18(b) for the predictive

control system. For the LQ control system, the error is on
the order of 10 -4 , while the error for the predictive control

system is on the order of 10 -7 . In both cases, however, the
control effort is almost the same (Fig. 19).

D. Robustness and Disturbance Suppression

The robustness of the closed-loop system to the plant-

parameter variations is checked as follows. The plant poles
are randomly perturbed within 20 percent margin, and

the error in the step-command tracking is simulated for

500 random samples. The results of the simulations are

presented in Fig. 20. On the average, tracking error has

changed about 5 percent in comparison with the nominal

plant error, and the maximal tracking error is 66 percent

larger than the nominal plant error. The step and fre-
quency responses of the closed-loop system for the nomi-

nal plant and for the plant model deviated 20 percent from
the nominal, as is shown in Figs. 21 and 22. Both plots

show good performance and robustness of the system.

Two sources of disturbances of the antenna are stud-

ied: the input disturbances and output disturbances (mea-

surement noise). The input-disturbance transfer functions

(from v_ to V) and output-disturbance transfer functions

(from vx to y) are shown in Fig. 23, the latter one for both

position- and rate-measurement noise. One can see from

Fig. 23 that the input disturbances are significantly sup-
pressed, while the position-measurement noise is amplified

over certain frequency ranges.

The nature of the antenna disturbances is not sat-

isfactorily known, and here their general properties are

outlined. Input disturbances, such as wind or thermal

forces, are low-frequency signals. Measurement noise, on

the other hand, is a high-frequency signal (high in compar-
ison to the antenna fundamental frequency, which is less

than 1 Hz). Therefore, for testing purposes, white-noise
input disturbances and high-frequency measurement noise

with frequency components over 3 Itz are applied. The sys-

tem response due to different signal-to-noise (S/N) ratios

is simulated. The results are compared in Fig. 24, where

good disturbance-suppression properties of the system are
observed. The impact of the input noise is much smaller
than that of measurement noise. This feature can be ex-

plained with the lowpass-filtering property of the plant;
the noise is filtered before entering the predictor. The

tracking error and plant input for input noise with S/N
ratio = 10 and for measurement noise with S/N ratio =

100 are shown in Figs. 25 and 26. The effect of the mea-
surement noise is reduced by applying a filter, as in Fig. 4.

The transfer-function plots from the output disturbances

to the system output for the system with the filter are

shown in Fig. 27. The tracking error due to measurement
noise is reduced significantly, even for white noise (Fig. 28).

E. Predictive Estimator

Predictive-estimator performance is compared to the

performance of the LQ estimator. The plant model

(Aa, Ba, Ca) has been used for sinmlations, with unit-

step input and zero-initial conditions. For estimation

purposes, the initial conditions have been changed to

[0.1 0.1 0.1 0.1] 7`. The estimation results are shown in
Fig. 29. The LQ estimator needs approximately 2 sec-
onds to reach an acceptable estimation error, while the

predictive estimator determines the states in virtually no
time. In the case of noisy output, with S/N ratio = 100,

one obtains estimation errors for the LQ and predictive

estimators (with and without filter) as in Fig. 30. The
unfiltered predictive estimate in Fig. 30(b) would make

the estimator useless for prediction purposes, llowever,

these errors are reduced by a filter, as in Fig. 30(c). The

maximum error of the predictive estimator with a filter is
much smaller than the residual error of the LQ estimator

even after 4 seconds in action. Finally, sinmlations indi-

cate that the identity-weighting matrix (Q_ = I) is the

optimal choice for estimation purposes.

VI. Conclusions

In this article, a modified state-space predictive con-

troller is introduced, and a predictive estimator is pre-

sented to complement the design of a predictive-control

law. This approach has been used for the design of the

tracking controllers of the NASA/JPL 70-m antennas.

Several tracking scenarios have been introduced (step in-

put, constant-rate rise and fall, raised-cosine trajectory)

to test the tracking behavior of the predictive controller.

Significant improvement of performance for presented sce-
narios has been observed. It has been shown that the time

for the predictive estimator to reach an acceptable level
of estimation error is nmch smaller than that for the LQ

estimator. Also, a wider bandwidth and improved roll-off
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rate is obtained for the predictive closed-loop system in

comparison with the LQ regulator system. The predictive

control system is robust to the plant-parameter variations.

Shifts of plant poles of 20 percent of their nominal values

keep the tracking performance good; the tracking error is
on the same order as for a nominal plant. Disturbance-

suppression properties of a predictive control system also
have been simulated and found to be good for input distur-
bances and measurement noise if the measurement-noise

spectrum is higher than the plant-fundamental frequency.
The system disturbance-suppression properties can be en-

hanced if the disturbance filter is included in the system.
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Fig.5. The predictive estimator: (a) without measuremenl noise
filter, and (b) with measurement noise filter.

Fig. 6. The predictive control and estimation system.
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